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Abstract—Self-supervised learning provides an effective ap-
proach to leverage a large amount of unlabeled data. Numerous
previous studies have indicated that applying self-supervision
to physiological signals can yield better representations of the
signals. In the paper, we aim to apply this method to the crucial
field of emotion recognition. We perform the experiment with
several state-of-the-art contrastive self-supervised methods to
explore their effectiveness in pre-training feature encoders on raw
electroencephalography (EEG) signals and fine-tuning the pre-
trained encoders on the downstream emotion classification tasks.
We attempt to vary the proportion of labeled data used during
fine-tuning and find that the improvement from self-supervised
methods is more pronounced when the proportion of labeled data
is small. Additionally, we explore the transferability of the feature
encoders pre-trained on various datasets and observe that most
self-supervised methods exhibit a certain degree of transferability.
Methods that effectively utilize the temporal information in EEG
signals show superior stability, accuracy, and transferability.

Index Terms—Self-supervised learning, EEG emotion classifi-
cation, Affective computing

I. INTRODUCTION

Recognizing and comprehending emotions, which play a
pivotal role in human daily life [1], are fundamental steps
in human interaction. Affective Brain-Computer Interfaces
(aBCIs) offer a technological means to directly detect human
emotions from electroencephalogram (EEG) signals. Perform-
ing emotion classification tasks on EEG signals collected
through aBCIs represents the initial stride toward grasping
human emotions [2]. It also has practical value in the objective
assessment of potential emotional disorders in mental health.

Nowadays, the volume of data used for training plays an
increasingly crucial role in the performance of models. Based
on vast amounts of unlabeled data, self-supervised learning
(SSL) has shown remarkable advantages in fields such as
speech recognition [3], [4] and natural language processing
[5]–[7]. Previous research on SSL for temporal physiological
signals has also yielded promising results. For instance, in
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datasets related to sleep stage detection, epilepsy detection,
human activity recognition [8]–[10], and other temporal data
sets, the SSL approaches that utilize a large amount of
unlabeled data for pre-training and fine-tuning on a smaller
labeled dataset have proven to achieve favorable outcomes.

In the task of emotion classification, previous studies with
manually extracted various EEG features have achieved good
results in multiple subject-dependent training scenarios [11].
Emotion recognition using SSL with extracted EEG features
has also yielded excellent results [12]. To better utilize the
vast amount of EEG data, especially unlabeled data, and to
learn more robust representations of EEG data, it is ultimately
necessary to perform SSL on raw EEG signals.

In our paper, we perform the experiment with several
state-of-the-art contrastive-learning-based SSL methods to ex-
plore their effectiveness in pre-training on raw EEG signals.
Throughout our experiments, we vary the quantity of labeled
data used in the fine-tuning stage to investigate the impact of
SSL on classification performance. The experimental results
indicate that most SSL methods show significant improvement
in accuracy when the amount of labeled data is limited. We
also attempt cross-dataset pre-training, aiming to validate the
potential of enlarging the pre-training dataset by incorporating
a wider variety of EEG signals. The results show that most of
the SSL methods are transferable.

II. METHOD

We use several SSL methods to pre-train our feature en-
coders to learn better representations and then evaluate them
on downstream tasks by fine-tuning the feature encoders.
The architecture of the pre-training methods and fine-tuning
process are shown in Figure 1.

A. Self-supervised Learning Algorithm

We aim to learn better EEG representations by applying
seven SSL methods, namely SimCLR, MoCo, ContraWR,
BYOL, CPC, and TS-TCC, to pre-train EEG feature extractor
in our experiments. The following is a brief introduction to
these SSL methods.

1) SimCLR: A simple Framework for Contrastive Learning
of Visual Representation [5] first applies two different data
augmentation methods to the same data sample. Then it uses
one encoder to generate anchor, positive, and negative samples
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Fig. 1. The schematic diagram shows the architecture of our experiment. It illustrates the principles of various SSL methods in the pre-training stage on
unlabeled raw signals and the emotion recognition model in the fine-tuning stage on limited labeled signals

from augmented samples. It maximizes agreement between
differently augmented views of the same data samples while
minimizing agreement between views of different samples
within the mini-batch.

2) MoCo: Momentum Contrast [6] maintains a queue of
encoded samples as a dictionary and updates it using a momen-
tum encoder, the positive samples are obtained by augmenting
the data within the current batch and then encoding it through
an encoder. At the same time, negative samples are derived
from the queue, and their encodings are obtained through
another encoder.

3) ContraWR: Contrast with the World Representation [13]
replaces the large number of negative samples with a single
average representation over the dataset, called the world rep-
resentation. The purpose of the loss function is to ensure that
the similarity in representations between the anchor and the
positive sample is stronger than the similarity between the
anchor and the world representation.

4) BYOL: Bootstrap Your Own Latent [14] is a contrastive
SSL method without negative pairs. It uses two neural net-
works, referred to as online and target networks, that interact
and learn from each other. Starting from an augmented view
of an image, BYOL trains its online network to predict the
target network’s representation of another augmented view of
the same image.

5) CPC: Contrastive Predictive Coding [9] is a predictive
contrastive SSL method that utilizes temporal information to
learn robust representations of time series data. It extracts
meaningful representations and then feeds them into an au-
toregressive model to predict future sequences. It aims to
maximize the agreement between the correct and predicted
future representations.

6) TS-TCC: Time-Series Representation Learning via Tem-
poral and Contextual Contrasting [8] is a cross-view con-
trastive prediction SSL method based on CPC. The data are
transformed using weak and strong augmentations, encoded by
a feature extractor, and sent into an autoregressive model to
generate context vectors. One augmented view’s context vector
predicts future sequences of the other one. The loss function
aims to maximize the agreement between the correct and
predicted future representations and the agreement between
the context vectors of the two augmentations.

B. Raw EEG Emotion Classification Model

Our emotion classification feature encoder is constructed
by 1D CNN models. Each CNN model contains three CNN
blocks with 1D Convolution, BatchNorm, ReLU, and Max-
Pooling layers. In the downstream task, we connect the
learnable weights to the feature encoder and a single-layer
linear classifier. Our goal is for the 1D CNN model to capture



valuable information from each channel of raw EEG signals,
while the learned weights associated with each channel are
intended to discern the significance of different channels in
emotion classification. We utilize the pre-training methods
mentioned earlier to obtain a well-trained feature encoder.
Fine-tuning is then performed on the labeled data in the
downstream emotion classification tasks.

III. EXPERIMENT

A. Datasets

We use SEED and SEED-IV datasets for pre-training and
evaluation. The SEED dataset contains EEG data of 15 sub-
jects with different types of emotion, which are positive, neg-
ative, and neutral [15]. The SEED-IV dataset is an evolution
of the original SEED dataset. It also contains EEG data of 15
subjects, the subjects in two datasets are different. The number
of categories of emotions changes to four: happy, sad, fear, and
neutral [16]. We downsample the continuous raw EEG signals
from SEED and SEED-IV to 200 Hz. Each sample is taken
as a 1-second window without overlap between consecutive
sample points, forming the datasets.

B. Experimental Settings

We pre-train the feature encoder separately by the SSL
methods of SimCLR, MoCo, ContraWR, BYOL, TS-TCC, and
CPC for 100 epochs. We also get the randomly initialized
feature encoder as the baseline of our experiment. Then, we
append channel weights, followed by a linear classifier, to the
encoder and fine-tune it for 30 epochs on SEED and SEED-IV
datasets, obtaining the final accuracy. For the SEED dataset,
we split it into a 3:1:1 ratio for training, validation, and testing
sets, while for the SEED-IV dataset, we use a 4:1:1 ratio.
We evaluate the models using three different random seeds to
obtain three distinct training sets, testing sets, and validation
sets while ensuring balanced label quantities within each fold.
We use the validation dataset to find the best hyperparameters
of various models, then finally test them on the test dataset to
get results. The pre-training learning rate is 3e-4, the weight
decay is 3e-4, and the batch size is 256. The fine-tuning
learning rate is 1e-3, the weight decay is 1e-2, and the batch
size is 16 when using no more than 5% dataset, 32 when using
no more than 10% dataset, 256 otherwise.

During the experiments, we attempt to fine-tune each subject
from the SEED and SEED-IV datasets using the feature
encoders, respectively, that are pre-trained on all the SEED
and SEED-IV training datasets. We also explore cross-dataset
transferability by fine-tuning each subject from SEED using
the feature encoders pre-trained on the entire SEED-IV train-
ing dataset and vice versa.

During the fine-tuning stage, we randomly sample a speci-
fied percentage of data with three fixed seeds from the original
dataset, train the feature encoders on this subset of data, and
finally compute the average accuracies over all subjects. In our
experiment, We divide the dataset into four gradients of data
volume: 1%, 5%, 10%, and 100% to evaluate the performance.
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Fig. 2. The average classification results of fine-tuning the feature encoders
pre-trained on the unlabeled data, respectively, with different percentages of
labeled data in the SEED and SEED-IV datasets.
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Fig. 3. The average classification results of cross-dataset pre-training and
fine-tuning with the labeled SEED dataset with different percentages of the
labeled data in the SEED and SEED-IV datasets, respectively.

IV. RESULTS

A. Performance Comparison of Pre-trained Encoders

We test the feature encoders pre-trained by the above SSL
methods, with the unlabeled data in the SEED and SEED-IV
datasets serving as the pre-training datasets, respectively. The
results are illustrated in Figure 2. It shows that with no more
than 10% of the data volume, most self-supervised methods
maintain a good lead in accuracy during fine-tuning. SimCLR,
ContraWR, and TS-TCC methods consistently show great
performance. They gain a 10% relative accuracy improvement
with only 1% data volume in both datasets and achieve
accuracy of 65.51%, 64.74%, and 64.55% on the SEED dataset
with only 5% data, respectively.

We also explore the cross-dataset transfer performance after
pre-training on different datasets. We fine-tune the feature
encoders well pre-trained on the SEED-IV dataset with various
SSL methods by each subject in the SEED dataset and vice
versa. The results are shown in Figure 3. It can be observed
that most SSL methods also show a significant advantage,
especially in scenarios with limited data. SimCLR, ContraWR,
and TS-TCC methods can also achieve approximately a 10%



Fig. 4. The topography maps represent the average weights of each channel
obtained from fine-tuning on the SEED dataset (the left one) and SEED-IV
dataset (the right one) with fixed pre-trained encoders, respectively.

relative accuracy improvement with only 1% data volume in
both datasets.

When all available labeled data is used, the volume of data is
sufficient to fine-tune the model effectively. Thus, the improve-
ment from self-supervised methods is not significant. However,
when data volume is insufficient, the encoder obtained through
self-supervised pretraining can better extract features, thereby
improving classification accuracy to some extent.

To summarize, most SSL methods demonstrate good im-
provements and transferability when limited data is used, espe-
cially for SimCLR, ContraWR, and TS-TCC methods. Among
them, the TS-TCC method based on temporal sequence SSL
consistently outperforms others only based on augmentations
in various data quantities, demonstrating excellent stability and
remarkable transferability. We guess BYOL does not perform
well since the signal-to-noise ratio of EEG signals is relatively
low, and training only with augmented positive sample pairs
is insufficient.

B. Key Brain Regions

After fine-tuning with the fixed feature encoders pre-trained
by TS-TCC, we visualize the weights of different channels,
represented as a topography map in Figure 4. Closer to
red indicates higher values, while closer to blue indicates
lower values. This topography map reflects the importance of
different channels in emotional cognition. It can be observed
that among these samples, the regions with high weights are
relatively consistent with previous studies [15], [16], including
the prefrontal lobe, temporal lobe, and occipital lobe. It can be
inferred that these brain regions play a more significant role
in tasks related to emotion.

V. CONCLUSION

In this paper, we attempt to apply some effective contrastive
learning SSL methods to emotion classification tasks using
raw EEG signals. In our experiments, it can be observed
that pre-training on the raw EEG signals, followed by fine-
tuning on a labeled dataset for emotion classification, leads
to an improvement in classification accuracy, particularly
in scenarios with limited labeled training data. Most SSL
methods demonstrate the ability to learn more robust EEG
features from raw signals. Furthermore, the pre-trained feature

extractors exhibit good transferability, capturing EEG features
that are not specific to the training dataset. This assures future
experiments involving diverse EEG datasets, aiming to learn
more robust representations of EEG signals.

Among these methods, TS-TCC, the method specifically
designed for time series signals, demonstrates the highest
stability, accuracy, and best transferability in most cases. This
suggests that, for signals like EEG, it is essential to design
self-supervised methods that prioritize temporal relationships.
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