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Introduction Wufando
Brain-Computer Interface
« Affective Brain-Computer Interfaces (aBCls) offer a technological means to

detect human emotions directly from electroencephalogram (EEG) signals.
Self-supervised learning
« SSL approaches that utilize a large amount of unlabeled data for pre-training and

fine-tuning on a smaller labeled dataset have proven to achieve favorable outcomes.
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Contribution

To investigate the Contrastive Self-supervised EEG Representation Learning for

Emotion Classification, in this paper:

1) We explore the effective feature encoder for raw EEG signals.

2) Experiment with and explore several classic contrastive self-supervised
learning methods to get better pretexts for raw EEG signals.

3) Visualize key brain regions for emotion classification.
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Pre-training methods
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Pre-training methods
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Pre-training methods
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EEG Emotion Dataset

Dataset
SEED’ and SEED-IV8, The SJTU Emotion EEG datasets are a series of datasets that record the EEG

signals of subjects while they are watching emotion videos.

« The SEED dataset includes three emotions: positive, neutral, and negative.

« The SEED-IV dataset includes four emotions: happy, sad, neutral, and fear.

« Each sample is a 1-second non-overlap window raw EEG signals with 62 channels.
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[7] W.-L. Zheng and B.-L. Lu, “Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks,” IEEE Transactions on Autonomous Mental Development,

vol. 7, no. 3, pp. 162-175, 2015.
[8] W.-L.Zheng,W.Liu,Y.Lu,B.-L.Lu,andA.Cichocki,“Emotionmeter: A multimodal framework for recognizing human emotions,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 1110-1122, 2019.
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Feature encoder

Encoder
« The feature encoder is constructed using 62 dependent 1D CNN models.
« Connect learnable weights to each channel of the feature encoder.

» Connect single-layer linear classifier to the end.
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Experiment Setting

A8THANNUAL IEEE Saisies Sorey

: "/

For the SEED dataset, we split it into a 3:1:1 ratio for training, validation, and testing sets, while for

the SEED-IV dataset, we use a 4:1:1 ratio.

We evaluate the models using three different random seeds to obtain three distinct training sets,

testing sets, and validation sets.

Pretrain with all unlabeled data and fine-tune with different portions of labeled data.
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Experimental Results
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With no more than 10% of the
data volume, most self-
supervised methods maintain a
good lead in accuracy during
fine-tuning.

SIMCLR, ContraWR, and TS-
TCC methods consistently
show great performance and
achieve accuracy of 65.51%,
64.74%, and 64.55% with only
5% data.
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The pre-trained feature extractors
exhibit good transferability,
capturing EEG features that are
not specific to the training dataset.

TS-TCC demonstrates the
highest stability, accuracy, and
best transferability. It is essential
to design self-supervised
methods that prioritize temporal
relationships.
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Key brain regions for emotion

Topography map
« The topography maps represent the average weights of each channel.
« The regions with high weights are relatively consistent with previous studies, including

the prefrontal lobe, temporal lobe, and occipital lobe.
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Conclusion

* Pre-training on the raw EEG signals, followed by fine- tuning on a labeled
dataset for emotion classification, leads to an improvement in classification

accuracy, particularly in scenarios with limited labeled training data.
« The pre-trained feature extractors exhibit good transferability.

* For signals like EEG, it is essential to design self-supervised methods that

prioritize temporal relationships.
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